Quasi-analytic Vectors and Quasi-analytic Functions

نویسنده

  • PAUL R. CHERNOFF
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fekete-Szeg"o problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination

In this paper, we define new subclasses ${S}^{*}_{q}(alpha,Phi),$ ${M}_{q}(alpha,Phi)$ and ${L}_{q}(alpha,Phi)$ of analytic functions in the space of logistic sigmoid functions based on quasi--subordination and determine the initial coefficient estimates $|a_2|$ and $|a_3|$ and also determine the relevant connection to the classical Fekete--Szeg"o inequalities. Further, we discuss the improved ...

متن کامل

Quasi–convolution of Analytic Functions with Applications

In this paper we define a new concept of quasi-convolution for analytic functions normalized by f (0) = 0 and f ′(0) = 1 in the unit disk E = {z ∈ C: |z| < 1} . We apply this new approach to study the closure properties of a certain class of analytic and univalent functions under some families of (known and new) integral operators.

متن کامل

Quasi-hadamard Product of Analytic P-valent Functions with Negative Coefficients

The authors establish certain results concerning the quasi-Hadamard product of analytic and p-valent functions with negative coefficients analogous to the results due to Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234 and 126(1987), 70-77).

متن کامل

On Quasi-Hadamard Product of Certain Classes of Analytic Functions

The main purpose of this paper is to derive some quasi-Hadamard product properties for certain classes of analytic functions which are defined by means of the Salagean operator. Relevant connections of the results presented here with those obtained in earlier works are also pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007